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Thermal convection with a continuous finite bandwidth of modes in a porous layer 
with horizontal walls at different mean temperatures is considered when a spatially 
non-uniform temperature is prescribed at the lower wall. The nonlinear problem of 
three-dimensional convection for values of the Rayleigh number close to the classical 
critical value is solved by using multiple scales and perturbation techniques. The 
preferred flow solutions are determined by a stability analysis. It is found that for the 
case of near-resonant wavelength excitation regular or non-regular solutions in the 
form of superposition of small-scale multi-modal solutions with large-scale multi- 
modal (or non-modal) amplitude can become preferred, provided the wave vectors of 
the solutions are contained in the set of wave vectors due to the modal form of the 
boundary imperfections and the form of the large-scale part is the same as that due to 
the boundary imperfections. For the case of non-resonant wavelength excitation some 
three-dimensional solutions in the form of superposition of small-scale multi-modal 
solutions with large-scale multi-modal (or non-modal) amplitudes can be preferred, 
provided that the wavelength of the small-scale modulation is not too small. Large- 
scale flow structures are quite different from the small-scale flow structures in a number 
of cases and, in particular, they can exhibit kinks and can be non-modal in nature. The 
resulting flow patterns are affected accordingly, and they can provide quite unusual 
and non-regular three-dimensional preferred patterns. In particular, they are multiples 
of irregular rectangular patterns, and they can be non-periodic. 

1. Introduction 
Riahi (1 993) investigated the problem of three-dimensional small-amplitude 

convection in a horizontal porous layer with a spatially non-uniform lower boundary 
temperature and for discrete modes only. The most surprising results were that regular 
or non-regular solutions in the form of multi-modal convection can become preferred 
in some range of the boundary modulation amplitude and wavenumber. 

This paper extends the problem of discrete-modal convection at small amplitudes in 
a horizontal porous layer with lower boundary imperfections (Riahi 1993) to the case 
of convection with a continuous finite bandwidth of modes using the method of 
approach due to Newell &Whitehead (1969). As was explained in Newell &Whitehead 
(1969), such convective flow includes a wider class of solutions which can describe 
adequately problems with the amplitude modulations which inevitably occur as a result 
of, for example, non-uniform boundary imperfections. 

Rees & Riley (1989a, b) investigated the effects of one-dimensional sinusoidal 
boundary imperfections on weakly nonlinear convection in a porous medium and 
determined, in particular, the nonlinear equations for the flow amplitudes, and the 
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effects of the boundary imperfections at the stability boundaries of different roll 
structures, and the evolution of the unstable rolls were studied. 

The present problem, which is, in a sense, an extension of Rees & Riley's (1989a, b) 
work to two-dimensional imperfections and three-dimensional flows, is an example of 
an imperfect bifurcation driven by imperfect heating and/or cooling. The work of a 
number of authors is relevant to the present problem and this is reviewed in Riahi 
(1993). 

The main purpose of the present study is to demonstrate the existence of some non- 
trivial and unusual results regarding the preferred flow solutions which can be realized 
near the onset of classical convection (Riahi 1983) because of the boundary 
imperfections, when a continuous band of modes is allowed to be represented. The 
main difference between the present work and Riahi (1993) is that here we treat modal 
packages instead of discrete modes, where the term modal package means a local 
continuous band of wavenumbers centred on a discrete mode (Newel1 & Whitehead 
1969). The advantages of such an approach are discussed in detail in the latter 
reference. 

The general problem under consideration can have practical value in that one might 
want to modulate the temperature of a boundary if the transport processes could be 
enhanced or if the flow structure could be controlled. The practical aspects of the 
problem and the main motivation for the study of the preferred convection pattern(s) 
were discussed in Riahi (1993). 

The present investigation extends Riahi's (1993) problem to arbitrary three- 
dimensional modal package flows and an arbitrary one- or two-dimensional non- 
uniform temperature boundary condition in the form of a modal package at the lower 
wall. We have found a number of interesting results for both modal and non-modal 
envelope solutions. In particular, we found for the modal case that a non-regular small- 
scale flow solution with a regular or non-regular large-scale flow pattern can be 
preferred even if the spatially non-uniform boundary temperature represents a regular 
pattern. By a 'regular flow pattern' we mean a pattern of the flow solution whose wave 
vectors all have the same magnitudes and where the angles between the two consecutive 
wave vectors all have the same value. Superposition of two regular patterns is called 
a semi-regular pattern. A solution other than a regular and semi-regular one is called 
a non-regular solution. Examples of regular and non-regular flow patterns were given 
in Riahi (1993) and will not be repeated here. For non-modal envelope solution cases, 
we found stable non-periodic solutions with non-modal amplitudes where, depending 
on the form of the boundary imperfections, one such amplitude couplet in different 
parts of space may be 180" out of phase, and the solutions can exhibit kinks in the 
horizontal structure. 

Let us denote the orders of magnitude of the amplitudes of convection and the non- 
uniform boundary temperature by e and 8, respectively, where it is assumed that e < 1 
and S -4 1. Kelly & Pal (1978) investigated the two-dimensional discrete modal and 
non-trivial resonant wavelength excitation case where S = O(e3). They demonstrated 
(Kelly & Pal 1976, 1978) that this case corresponds to the range R z R,(R- R, = 
O(e2)). Here R, is the critical value of R (the Rayleigh number) below which there is 
no motion. For a discrete modal and non-resonant wavelength excitation case, Pal & 
Kelly (1978) applied a double series expansion in powers of 6 and e for each of the 
dependent variables and for R. Similar double series expansions were used by Rees & 
Riley (1989b). The present three-dimensional problem is based on some of the 
procedures used by Newell &Whitehead (1969), Kelly & Pal (1978), Pal & Kelly (1978) 
and Rees & Riley (1989a, b). 
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This paper starts with the formulation of the basic equations and the boundary 
conditions. The case of near-resonant wavelength excitation is considered in fj3 and 
general, modal and non-modal analyses plus the results and some examples are 
provided there. The case of non-resonant wavelength excitation is correspondingly 
treated in 94. A general discussion with some comments about possible future 
extensions of the problem are given in fj 5 ,  and 96 provides some brief conclusions from 
the results of the present study. Many of the equations, which can be quite lengthy, are 
not given in the present paper. They are, however, available from the author and can 
be provided to individual readers upon request. 

2. Formulation 
We consider an infinite horizontal porous layer of average depth d filled with fluid 

and heated from below. The layer is bounded above and below by two plane surfaces 
whose mean temperatures are T, and z, respectively. We choose to scale the 
temperature T* on the basis of AT = z- E. It is convenient to introduce a Cartesian 
system of coordinates, with the origin on the centreplane of the layer and with the 2- 

coordinate in the vertical direction (opposite to the direction of the gravity force). We 
shall examine the effects of lower-boundary modulations at a fixed value of AT and 
represent the magnitude of such variation relative to AT by 6. We define a temperature 
relative to the conduction state by 

T*(x,  y ,  z ,  t )  = - - z - + T(x, y ,  z ,  t ) .  (; )A: 

It is convenient to use non-dimensional variables in which lengths, velocities, time and 
temperature T are scaled respectively by d, h/dp,c, d2p,c/h and AT/R.  Here R = 
PgKATdp, c/(uh) is the Rayleigh number, P is the coefficient of thermal expansion, g 
is the acceleration due to gravity, K is the Darcy permeability coefficient, po is the 
reference fluid density, c is the specific heat at constant pressure, h is the thermal 
conductivity of the porous medium (fluid-solid mixture) and u is the kinematic 
viscosity. Then, with the usual Boussinesq approximation that density variations are 
taken into account only in the buoyancy term, the Darcy-Boussinesq-Oberbeck 
equations for momentum, continuity and heat in the limit of infinite Prandtl-Darcy 
number (Joseph 1976) are obtained, which are given in Riahi (1993). These are 
equations for 8, u and p.  Here 8 is dimensionless T, u is the velocity vector and p is the 
modified deviation of pressure from its static value. 

The governing equations are simplified by using the representation 

u = a$, n = VX. vxz, (2.2) 
for the divergence-free velocity vector field u (Riahi 1983). Here z is a unit vector in the 
vertical direction and $ is the poloidal function for u. 

Taking the vertical component of the double curl of the momentum equation and 
using (2.2) in the heat equation yields the following equations: 

A2(V2$++) = 0, (2.3 a)  

(2.3 b) 

where 
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Equation (2.3) must then be solved subject to the boundary conditions 

$ = O  at z = f g ,  
8 = SRh(x,y) at z = -f, 

8 = 0  at z = ~ ,  1 

where h(x,y) is a given spatially non-uniform function of x and y .  

( 2 . 4 ~ )  
(2.4b) 
( 2 . 4 ~ )  

3. Near-resonant wavelength excitation 
3.1. General analysis 

This case corresponds to the critical regime where R FZ R, and 6 = O ( 6 )  (Kelly & Pal 
1978). We consider the following expansions for 4, 8 and R in powers of e: 

and set S = s3. Upon inserting (3.1) into (2.3) and (2.4) and disregarding the quadratic 
terms, we find the linear problem, whose system of equations is given in Riahi (1993). 
This system is the classical linear system (Riahi 1983) whose general modal package 
solution can be written as 

where A ,  are functions of the flow variables 

x, = € X ,  y ,  = slJZy, ts = e2t (3.3) 

(Newel1 & Whitehead 1969). This scaling restricts the analysis to perturbations from 
two-dimensional roll solutions. The function W, introduced in (3.2) has the 
representation 

and satisfies the relation 
- A2 W, = a2Wn. (3.4b) 

Here Y is the horizontal position vector, i = .\/ - 1, a is the horizontal wavenumber of 
the flow structure, N is a positive integer, and the horizontal wavenumber vectors 
k, = (k,,, knJ of the flow structure satisfy the properties 

Wn = exp(ik,-r), (3 .44  

k,.z = 0, lk,l = a, k, = -k  n' (3.5) 

A: = A-,, (3.6) 

The amplitude functions A ,  satisfy the condition 

where the asterisk indicates the complex conjugate. Following Riahi (1983), the results 
for R,, its minimum R,  attained at a = a,, and the expressions for f ( z )  and g(z) are 
obtained; they are given in Riahi (1993). 

At order 2, (2.3) and (2.4) become a system of the classical type (Riahi 1983), except 
for the terms which are due to variations of q51 and 8, with respect to slow variables 
in the present formulation. 

Since the classical problem is self-adjoint, the solvability conditions for the equations 
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and H,, of of higher order in E require us to define the following special solutions 
the linear system: 

Multiplying ( 2 . 3 ~ ~ )  by q5&, (2.3h) by - R i l  OF,, adding and averaging over the whole 
layer (in x, y and z )  and using the boundary conditions (2.4) yields R ,  = 0 at order 2 
(Riahi 1983). At order e3, (2.3) and (2.4) involve the function h which is assumed to 
have the following arbitrary representation : 

,y ( h i  Ly ( b )  

h(x, y )  = R;I C L, Wg)  = R;l C L,  exp (ikf) . r),  (3.8) 
,z=..,y(b) l l = - . y ( b )  

where L,  are functions of x , ~  and y S ,  N ‘ @  is a positive integer which may tend to infinity, 
and the horizontal wavenumber vectors kLb) = (klpi, kit;) satisfy the properties, 

@) . z  = 0, l / qb ’ l  = @I, k‘,;’ = -p) 71 ‘ (3.9) 
The functions L, satisfy the condition 

L,* = L-,. (3.10) 

We shall assume that akb) = a, = n (Riahi 1983). In general, akb) are not all the same 
as x, for different it. Most of these latter cases will be considered in $4, while the rest 
will be discussed in $ 5 .  

Multiplying (2.3 a )  by I$;,, (2.3h) by - R;’ O:,, adding and averaging over the whole 
layer (in x, and z) and using the boundary conditions (2.4) yields a system of 
equations for A ,  (n  = - N ,  ... , - 1,1,  ... , N )  at order t3. This system also contains R,. 
Hereafter, angular brackets indicate an average over the fluid layer. 

Using the above results, doing some scalings of t,s, L ,  and A,n (for all possible m) and 
applying the conditions given in Riahi (1993) for the non-zero average product ( W,* 
W, Wp Wm), we end up with the simplified form of the above system which we refer to 
here as system (A). System (A) is also a collection of 2N partial differential equations 
for the 2N unknown functions A,, (n  = - N ,  ... , - 1,1 ,  ... , N ) .  

To distinguish the physically realizable solution(s) among all the steady solutions 
of (A), the stability of A ,  (m = - N ,  ... , - 1, 1, ... , N )  with respect to disturbances 
B,(xs, J),~, t,) are investigated. The system of equations for the time-dependent disturb- 
ances B,(n = - N ,  . . . , - I ,  1 ,  . . . , N )  with the addition of a time dependence of the form 
exp (at,) is then considered. The disturbance amplitude functions B,  satisfy conditions 
of the form (3.6) for a = cr*. Taking the complex conjugate of the disturbance system 
and replacing the subscript n by -n, it then can be seen after some re-arrangement that 
B, exp ( ( ~ t , ~ )  = BT, exp (a*t,) which implies that (T is real. It is clear that the modulation 
affects the steady solutions directly as source terms in (A) while the modulation affects 
the disturbances indirectly through the steady solutions. 

3.2. Modal analysis 
The functions L,(x ,~ ,~ , )  given in (A) are assumed to have the following arbitrary 
representations : 

(m = - N‘”, . . . , - 1, 1, ... , N‘”),  (3.11) 
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where Wb)  is a positive integer which may tend to infinity, rs = (xs,ys),  the horizontal 
wavenumber vectors yibA = (y tAx ,  ykbA,) satisfy the properties 

(0) +b) - - ( b )  (3.12) ( b )  b (b )  (0) Ynm’Z = 0, IYnml = Anm, Y-nm = -Ynm, n,-m - Ynmr 

and the constant coefficients I,, satisfy the condition 

I,, * = lpmn. (3.13) 
For L,  = 0 or ( W ;  W g ) )  = 0 (m = - N @ )  > *.., - 1, . . . , N @ ) ) ,  the expressions for R, 
and cr given by (A) and the disturbance system are the same as the corresponding ones 
for the classical problem in the absence of modulation. The wavenumbers A:; are all 
assumed to have the same values as A@). 

The system (A) and the representation (3.1 1) for significant modulation suggest 
assuming the following steady form for A,: 

(3.14 a)  

(3.14b) 

where M is a positive integer, and the wave vectors y j n  satisfy properties of the type 
(3.12) with no superscript b. We shall assume that the wavenumbers A,, all have the 
same value as A. 

Using (3.11) and (3.14) in (A), multiplying the system (A) by v;., and averaging over 
the slow variables (xs and y,), we end up with a lengthy system for the coefficients a,,,. 

The form (3.14) of the steady solutions A ,  suggests that the disturbance amplitude 
function B,, obeyed by the disturbance system, should be of the form 

(3.1 5 a)  

where Fin = exp (ijjjn - rs).  (3.15b) 
The horizontal wavenumber vectors j j n m  = (Tam,, of disturbances satisfy the 
properties 

- 
Yj ( -n )  - Yjn,  7nm.Z = 0, lu”nml = Anm, Y”(-n)m = -Y”nm, 7 n m  Ynm 

(for n = - M @ ) ,  ..., -1,1, ..., m = - N ,  ..., -1, ..., N ) .  (3.16) 

The constant coefficients bnj satisfy the condition 

b -w . = b”.. nj (3.17) 

Using (3.14) and (3.15) in the disturbance system, multiplying this by Y”;., and 
averaging over the slow variables, we find a lengthy system for the coefficients bnnf. It 
is seen from (3.14) and (3.15) that the wave vectors of the steady amplitudes are the 
same as those of the boundary modulation, while the wave vectors of the disturbance 
amplitudes contain those of the boundary modulation. The preferred solution 
corresponds to the one for which cr from the system for bnn, is non-positive and R, from 
the system for a,,, is the smallest among all the stable solutions. 

Note that (3.14)-(3.17) and the systems for an,. and bn,, are based on the assumption 
that at least one wave vector k ,  of the flow coincides with one wave vector kg) of the 
boundary modulation. This is the non-trivial case which we refer to as the significant 
modulation case, since otherwise the boundary modulation is ineffective. 

The systems for a,,, and bn,, are then simplified by evaluating the average products 
of the type ( W,* W, W,), etc. 
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Let us now consider the following specific examples in order to illustrate the non- 
trivial and often surprising inter-relations between the boundary modulation pattern 
and the subsequent preferred flow pattern. 

Example I 
= 1, A ,  = a,, vZn and real anZ. Consider the case N = 1 first. The 

expression (3.14) for A ,  then implies that a,,-l = 0, and A ,  is complex. Using (3.6), 
we find that anl = since a,, is real. For n’ = - 1, the system for a,,, implies 
l,,+ = 0, while for a significant corrugation effect (y,., = yg?, and k,  = kg))  and for 
n’ = - 1 it leads to the following equation for a,!: 

a;!+ (/3,,/2) a,, - L / 2  = 0, (3.18a) 

M = M ( b )  = 

where (3.18b) 

The above equation implies that lnl should also be real. Since a,, = a-n,z, (3.18) 
implies that 

1-1.1 = 4 1  + ( P - 1 . 1 -  P l l )  all. (3.19) 

We assume that (3.19) holds. Defining 

Y,,l = +in[, r,, = kpn,, D,, = -I- r;1, (3.20) 
we find that there is only one real root for (3.18a) if 

(3.21) 

while there are three real roots otherwise, and that 
112 113 (3.22) 

for the case where (3.21) holds. Since the preferred solution corresponds to the smallest 
value of R,, (3.22) is the only real root of (3 .18~)  and is the preferred solution. Next, 
we consider the stability of (3.22). For In’l > 1, the system for b,,, yields the result that 
b,,,(n = - 1 , l )  are real and satisfy the following equations: 

112 113 a,, = [r,,+D,,I +[YnL-Dnll 

(n +fi-l,. + 7aqJ b-l,, + 2a:, b,,, = 0, 
2a:, b-ln, + (a+p,,. + 7aqJ bl,, = 0,  

(3.23a) 
(3.23b) 

where 

Applying the condition for non-trivial solution for (3.23) leads to a quadratic equation 
for cr whose roots are real. For sufficiently large JR2J  this equation has at least one 
positive root for R, > 0, while both roots are negative for R, < 0. Hence the preferred 
solution a,, which corresponds to the smallest value of R, is indeed stable with respect 
to disturbances for which In’] > 1. For In’1 < 1 the system for bnn, yields the result that 
CT is real and that these disturbances are less dangerous than those for the ln’l > 1 case. 

We now consider the case of arbitrary N > 1. For 1 < n ,< N ,  the system for a,,, 
yields the following non-trivial equation for an,. : 

( 3 . 2 5 ~ )  

(3.25b) 
I m = N  

Pnn.-2a;,.+2 C. c,,a&,’ a,,, = 0, 

c,, = (2 + ul,, + ! -L,) /2> 

,=l 

where 
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and Ymn is defined by 

Ym, = (3-Jmn)(1 +Jm,)2/(7-4~m,+&,), Jmn a-'(k,*k,). (3.25~) 
This equation implies that there exists a non-trivial solution only if p,,. < 0 for values 
of n for which a,,, += 0 since Ymn + Ymn > 0. However, a negative value of Pnn. 
defined by (3.18) implies that R, > 0 for arbitrary N > 1. Hence solutions for N > 1 are 
not preferred compared to the one for N = 1 which corresponds to R, < 0. The results 
discussed above indicate that small-scale two-dimensional rolls solutions along the 
corrugation wave vector ktb) with large-scale roll amplitudes along y!? are, thus, 
preferred. The resulting flow pattern with klb) + cyl;) along the x-axis becomes rolls 
parallel to the y-axis. Streamlines in the (x,y)-plane are thus straight lines parallel to 
the y-axis. Similarly, the lower-boundary isothermal lines are all straight lines parallel 
to the y-axis. The flow pattern of the solution (streamlines) projected on the vertical 
(x, z)-plane is also determined for a = a?) = h = A@) = 7c and e = 0.1. Clearly the 
preferred flow pattern in this case has a wavelength slightly larger than the one from 
classical theory (Riahi 1983), but the horizontal flow structure follows the boundary 
imperfection shape. The roll cells in this case also repeat themselves along x-axis. 

Example 2 
This example is essentially the same as the previous one, except that now A ,  = 

a,, v,, +a,,-, v-,,, for real a,, and a,,-,. We assume real I,, and take the case 
ill =.I,,-,. Using the same procedure as in example 1, we find that the preferred 
solution corresponds to the case of significant corrugation effects and N = 1. The 
following equation for a,,, then results from the system for a,,,: 

(3.26) 

We assume that yibiJ is either along the x-axis or along the y-axis which implies that 
Pnl = p,,-,. For R, < 0, p,,. > 0 and there is only one real root to equation (3.26) for 
a,,,. We find that a,,, = a,, for n, n' = - 1,l .  The resulting isothermal lines at the 
lower boundary and the flow streamlines in the (x, y)-plane are shown in figures 1 (a) 
and 1 (b) for the case of k?) parallel to the x-axis, y$!) parallel to the y-axis, and for 
e = 0.1, h = A@) = 9. ln, a = a:) = 7c. It is seen from these figures that the preferred flow 
pattern is due to rectangular cells with the wavelength along the y-axis somewhat larger 
than the one along the x-axis. The isotherms also exhibit a rectangular pattern and with 
the wavelength along the y-axis larger than the one along the x-axis. Again as in 
example 1, the cells are repeatable along both the x- and y-axes. The patterns shown 
in figures 1 (a)  and 1 (b) have a horizontal wavenumber of about 1.35aC, and they have 
the same wavelength along the x- and y-directions. All the figures herein are drawn at 
O(1) scales. 

Example 3 
M = M @ )  = 1, N @ )  = 2 > n  A = a,, v,, and real atLl. Expression (3.14) for A ,  implies 

that a,,-l = 0 and A ,  is complex. Using (3.6), we find that a,, = u-nl since a,, is real. 
Consider first N = 1. For n' = - 1, the system for a,,, implies = 0, while for 
significant corrugation effect (y,., = y:?, and k ,  = k:)) and for n' = 1 it leads to 
equation (3.21 a)  for N = 1. The results (3.19)-(3.23) for N = 1 then follow. 

For N = 2, the system for an,, leads to the following non-trivial equations for a,, 
and a2,: 

( 3 . 2 7 ~ ~  b) [p,, + 2c,, a 3  a,, = Z,, - 2 4 ,  [p,, + 2c,, a&] a2, = I,, - 2ai,. 
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FIGURE 1. (a) Isothermal lines at the lower boundary and (b) streamlines in the (x,y)-plane, with k?’ 
parallel to the x-axis, yi?) along the y-axis and for M = M(*) = N = Wh)  = 1, A n = a nl v 1n +a n , - A l , n  

(real a,, and a,! J, c = 0. I ,  k,  = kfl yln = y c b )  I n >  cc = ccf) = 71, h = A(’) = 9. 171. 

The preferred solutions to (3.27) correspond to the case where there is only a single real 
root. The range for R, for which these solutions exist is wider than for N = 1. 

Next, we consider the general N > 2 case. There exists at least one n such that 
the system for a,,, leads to the following non-trivial equation for the coefficients 
am,(rn = 1, ...,i?) : 

6ai,  = - C 2cm,a~,-P,, .  (3.28) 
m=N 

m=1 
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Since am,(rn = 1, ... , N )  are all real, (3.28) implies that ,!In1 defined by (3.18b) should 
be negative which means that R, should be positive. Hence, such solutions are not 
preferred compared to the cases N = 1,2 which can correspond to sufficiently small 
and negative R, and are possible preferred solutions for this example. Stability analysis 
for the cases N = 1,2 based on the system for b,,, also indicates that the solutions for 
these two cases are stable for sufficiently small and negative values of R,. The preferred 
flow solution, thus, can be small-scale rectangles or a roll solution with large-scale roll 
amplitude. The problem can also be generalized to arbitrary N @ ) .  All solutions for 
N < N @ )  are possible preferred solutions for sufficiently small and negative R,, while 
solutions for N > N ( * )  are not preferred since they correspond to positive R,. The 
preferred flow patterns, thus, can be superimposed small-scale multi-modal ( N  < N @ ) )  
solution with large-scale roll amplitude. The resulting isotherms at z = -+ and the flow 
streamlines in the (x, z)- and (x, y)-planes are determined explicitly for N = 2 and for 
kib) + eyit) parallel to the x-axis, kp) + eyii) along the y-axis, and for lkr) + q# = 1. ln, 
Jki*)+ey$i)l = 0.97~ It is found from these results that the preferred horizontal flow 
pattern is rectangular with wavelength along the y-axis slightly larger than the one 
along the x-axis and is similar to that shown in figure 1 (b). The vertical structure of the 
preferred flow pattern is also rectangular and is slightly longer along the z-axis. The 
isotherms also exhibit a rectangular shape similar to those shown in figure 1 (a). The 
horizontal wavenumber of the preferred flow is about 1 . 4 2 ~ ~ ~ .  

Example 4 
A4 = Wb) = 2, N ( * )  = 1 ,  A ,  = (a,, vln+an2v2,)  and real a,, and a,,. Here again 

a,,-, - - a,,-, = 0, A ,  is complex and a,$ = u-,i(i = 1,2). Consider N = 1 first. The 
system for a,,, leads to the following simplified equations for a,, and a,,: 

(Pn1+6a:z)an, = ln1-2~;1, (Pn2+6a;l>a,, = 1,2-2~:2- (3.29~9 b) 

The preferred solutions to (3.29) correspond to the case where there is only a single real 
root. The range for R, for which these solutions exist is wider than the corresponding 
case for Wb) = 1. 

Next, we consider the general N > 1 case. There exists at least one n such that the 
system for a,,, leads to the following non-trivial equations for a,, and a,,: 

m=N 

P n l a n l  = - C ( I +  Y / , n ) a n , ( a m , + a m z ) 2 + 2 a n l ( a ~ l + 3 a ~ , )  
m=-N 

m=N 

+2 C ( I +  Yl,n)(an,--a,Jam1am,, (3.30a) 
m=-N 

m=N 

Pnzanz = - C (1+~mn)an , (aml+am, )2+2an , (a~ ,+3a~ , )  
m=-N 

m=N 

-2 C (1 + YrnJ (an1 -an21 am1 urn,* (3430b) 
m=-N 

It is seen that (3.30b) can be derived from (3.30~) by replacing subscript n l  by n2. 
Hence, results for general N can be obtained by considering the case a,, = a,, and 
Pnl = P,, for the particular n under consideration. Then, (3.30) implies that there 
exists a non-trivial solution only for positive R,. Hence these solutions for N > 1 are 
not preferred. The preferred flow solution, thus, can be small-scale roll solution with 
the large-scale rectangular form of amplitude. 
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The resulting isotherms at z = -$ and the flow streamlines in the (x,y)-plane are 
calculated for N = 1 and for real I,,, I,, = ln2,  lrb,  p2  = I?,, -, = 0, k?’ + eyt!) parallel to 
the x-axis, kjb) + e y g )  parallel to the y-axis, and for (kr ’  + ey$”,l = 1. ln ,  Jki” + yi:)l = 
1.1 n. It is found from these results that the preferred horizontal flow is essentially in 
the form of square pattern. The isotherms also exhibit a similar pattern. The horizontal 
wavenumber of the preferred flow is about 1 . 5 6 ~ .  

The four examples presented above can be generalized to the case of arbitrary N@’,  
arbitrary M ( b ) ,  

n’=M 

A ,  = c %,‘V/ ,  32 
n’=l 

with real a,,. and M = M @ ) .  The preferred flow solution is the superposition of a 
small-scale multi-modal ( N  ,< N(*’)  solution and a large-scale multi-modal ( N  d M‘”)  
amplitude function. 

3.3. Non-modal analysis 
We consider the amplitude system (A) for cases where 

A ,  = a, tanh x, + ib, sech x, = ii, + iv,, (3.31) 

where a, and D, are the real and imaginary parts of A,, respectively. Equation (3.31) 
is suggested by the simple envelope solution due to Newell & Whitehead (1969) in their 
studies of finite-bandwidth finite-amplitude roll convection. The coefficients a,  and b, 
given in (3.31) are real constants. Equation (3.31) is suggested by the following form 
of the boundary imperfection functions L ,  : 

L,  = g, tanh x , ~  + ih, sech I,<, (3.32) 

where g, and h, are real constants. The justification for such a choice was confirmed 
by using (3.31) and (3.32) in (A) which leads to an algebraic system of 8N 
equations for 4(N+ N @ ) )  unknown coefficients anr,  b,, g, and h,. Generally, a solution 
for N > N @ )  is not possible, unless a,, = b, = 0 for m > N @ ) .  Non-trivial solutions 
(a, + 0, b,m + 0) are always possible for N < N ” ) .  Of course we are assuming signifi- 
cant boundary imperfections, so that the above system involves at least one non-zero 

It should be noted that one could, in general, consider any solution of the form 
A ,  = &(x,,ys) for (A), for given functions eL, where the functions L ,  are chosen to 
satisfy (A). However, detailed investigation of the stability of such a solution requires 
knowledge of particular forms of F,, although as we shall see later in this subsection, 
all such types of solution can become stable for sufficiently large IRJ and R, < 0, 
provided the horizontal averages of functions involving the base flow and disturbance 
quantities and/or their first or higher derivatives remain finite. 

Before considering the stability of solutions of the form (3.31), it is worth stating that 
one of the main reasons for assuming this form of solutions is the rather unusual non- 
modal properties of the real parts U, of such solutions. Where u, is weak, namely at 
x, = 0, ZT, is stronger and vice versa. For large IxJ, the solutions (3.2) are of scale 2n/a, 
but the sense of rotation of the corresponding pattern couplets due to u, is reversed on 
the opposite side of the x, = 0 axis. 

Next, we consider stability of solutions of the form (3.31) with respect to 
disturbances B, of the general form 

gm or hm. 

B,  = li, +ifin, (3.33) 

where zi, and 6, are the real and imaginary parts of B,, respectively. Using (3.31) and 
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(3.33) in the disturbance system and separating the real and imaginary parts leads us 
to systems for zi, and 6,. Multiply the system for zi, by G,, that for 6, by 3,, add the 
two results and average over the slow variables. The resulting system has the property 
that CT < 0 for sufficiently large JR,I and R, < 0, provided the resulting horizontal 
averages which involve a,, C,, zi,, 6, and their first- or higher-order derivatives remain 
finite. This result holds for general base flow solutions which include those in (3.31), 
provided that the boundary imperfections are significant so that at least one k ,  is along 
one kg) .  For insignificant boundary imperfections, where none of the wave vectors k ,  
are along any of the wave vectors kg) ,  it is not difficult to show from the systems for 
(a,, b,) and (zi,, 6,) that the base flow solutions with ‘kinks’ an = a tanh x, and i~, = 
0 for all n are unstable and R, = 2 and CT = 1 follow. For significant boundary 
imperfections, such solutions can be stable as the following examples indicate. In 
particular, a solution to the problem presented in example 1 given below for N = Nb)  
= 1, R, < 0, h,  = 0 and with the amplitude function given by (3.31) with b, = 0 is 

stable, provided a, = 4 2  for g, > 0 or a, = - 2/2 for g, < 0. Such a stable solution for 
this problems turn out to be also the preferred one, compared to other possible stable 
solutions with b, + 0, since it corresponds to smaller R,, as the details presented in the 
example 1 below indicate. The boundary imperfection corresponding to such a stable 
solution has the following form for the shape function h, given by (3.8): 

h = 2RLSg, tanhx,c~s(k‘,~)-r) ,  
which has the same horizontal variations as the one for the temperature deviation 8, 
or the poloidal velocity component 4, of the stable solution for a significant 
imperfection (k ,  = kib)). The reason for the stabilization of such a solution lies on the 
fact that this is a near-resonant case and that the wave vector of the solution is parallel 
to the imperfection wave vector. The stability analysis for such a solution indicated 
that only under the above conditions on g,, h,, a,, b, and R, is such solution stable with 
respect to disturbances of the form (3.33). 

Let us now consider the following specific examples in order to illustrate the inter- 
relations between the boundary imperfections and the resulting preferred flow patterns 
and to demonstrate specific conditions on R, under which the absolute stability of 
different solutions with ‘kinks ’ is possible. 

Example 1 
N ( @  = 1. Consider the case N = 1 first. Suppose g, = 0 and h, + 0. Then the system 

for a, and b, implies that both a, and b, are non-zero and R, = 2(1 +A:). Assuming 
that the disturbance quantities zil and 6, have a dependence on y ,  of the form 
exp (p,y) or cos (‘J,y), for some constant p,, we find that the most critical disturbances 
correspond to /3, = 0. Hence, we consider 6,  and C1 to be functions of x, only. Next, 
multiply the system for zi, by zi,, that for 6, by 6,: add the two results and average over 
the slow variable x,. The resulting system then yields the results that no stable solution 
is possible for sufficiently large h,, while a stable solution may be possible for 
sufficiently small h, though such a possibility cannot be proved rigorously. It is seen 
from these results that smaller-R, cases are favoured over larger-R, cases. Suppose now 
that g, $: 0 and h, = 0. Then the system for a, and b, implies that a non-zero value for 
b, is possible for R, > 1, while R, can be smaller for b, = 0. We find, by assuming 
6, = 0, that 

Hence, a, = - 1/2 is preferred for g, < 0, while a, = 2/2 is preferred for g, > 0. The 
most dangerous disturbances again correspond to the case where /3, = 0. This result 

af = 2, R, = 2-g1/a,. (3.34) 
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appears to be general and hold for arbitrary N and N @ ) .  It is due to the fourth-order 
derivative term in ys in the systems for 6,  and O , ,  which leads to a positive constant, 
and maximizes cr for p, = 0. Again forming the integral system for the averaged 
amplitude of the disturbances, we find that the b, = 0 solution for (3.34) is stable for 
R, < 0. Applying the same method of approach as the one described above for the 
g ,  $; 0 and h, =l= 0 case, we find 

(3.35) 

and this solution is stable for R, < 0. Again the negative root for a, is preferred for 
g,  < 0, while the opposite is true for a, > 0. 

We now consider the case of arbitrary N > 1. Again assuming that the wave vector 
k,  is along klb), we find from the system for a, and b, that a solution exists only for 
the case where 

alL = b,, = 0 for 1 < n < N. (3.36) 

The results given above indicate that small-scale modal roll solutions along the 
corrugation wave vector ky)  with large-scale non-modal roll amplitudes with ‘kinks ’ 
are preferred. The resulting isotherms at z = -; and streamlines in the (x, y)-plane with 
k r )  along the y-axis are shown in figures 2(a)  and 2(b)  respectively, for N = N @ )  = 1, 
b, = h, = 0, E = 0.1, a = akb) = x and for a significant imperfection (k ,  = kib)). It is 
seen from these figures that the preferred horizontal flow pattern for kib) is along the 
y-axis, is periodic in y and symmetric with respect to the y-axis but is non-periodic in 
x. It represents a pattern due to rectangles near x = 0 and rolls parallel to the x-axis 
for larger 1x1 which are repeated in the y-direction, but they also vary in x, particularly 
for small 1x1. This type of flow pattern may be classified as three-dimensional non- 
regular mixed rectangles and rolls or a mixed long and short rectangular pattern. The 
isotherms also exhibit a pattern somewhat similar to that for the horizontal flow 
structure. The wavenumber in the y-direction is 3.14. The flow is non-periodic along 
the x-direction. 

Example 2 
N @ )  = 2. For significant corrugation effects, we assume k ,  = kib) and k,  = kib). 

Consider first N = 1. Using the system for a,  and b,, we obtain the results (3.34) and 
(3.35) and, thus, the results for the Wb) = 1 case (example 1) follow. For N = 2, we 
consider the general case g,  $; 0 and h,  =# 0 (m = I ,  2), and we find from the system 
for a, and b, that 

a: = (1 + cl,)-’ + b:, b, = h, a,/(g, -a,,,), m = 1,2,  (3.374 
(3.37b) 

It is seen from (3.37) and (A) that c , ~  > 1, a negative root for a,  is preferred for g ,  < 
0, and the opposite is true for a,  > 0. Applying the same stability analysis described for 
example 1, we find that the solution (3.37) is stable for R, < -4(1 +c,,)[max(a~,a~)]. 

For N > 2 and for significant boundary corrugation where k ,  = k:)(n = 1,2), we 
find from the system for a,  and 6, that a solution exists only for the case where 

a,  = h, = 0 for 2 < n d N. (3.38) 

The results discussed above indicate that the preferred solutions can be either small- 
scale modal roll solutions with large-scale non-modal roll amplitudes or small-scale 
modal rectangle-type solutions with larger-scale non-modal amplitude in the form of 
rectangles. The resulting isotherms at z = -a and the flow streamlines in the (x,y)- and 

R, = 2(af + C ,  a:) -g l /a ,  = 2(ai + cI2 af) -g,/a,. 
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FIGURE 2.  (a) Isotherms at the lower boundary and (b) streamlines in the (x,y)-plane with ky) parallel 
to y-axis, for N = N(b)  = 1, b, = h, = 0, E = 0.1, k,  = kzl, a = a:) = n. 

(x, z)-planes are determined for N = N @ )  = 1, b, = h, = 0, k ,  = kib)(n = 1,2), g ,  = g,,  
6 = 0.14, a = sib) = n: and for kib) + kib) parallel to the x-axis and kib) - kib) parallel to 
the y-axis. It is found from these results that the preferred horizontal and vertical flow 
patterns are similar, in the form of non-regular and non-periodic rectangles for small 
1x1 near x = 0 which changes to regular squares for sufficiently large 1x1. The boundary 
imperfection isotherms display a similar x-dependent pattern with a sharp change in 
the pattern across the y-axis (x = 0). The wavenumber in the y-direction is 3.14. The 
flow is non-periodic with respect to x, but is periodic in y. 
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The two examples presented above can be generalized to arbitrary N"). The 
preferred flow solution is a superposition of a small-scale multi-modal ( N  d N @ ) )  
solution and a large-scale multi-non-modal ( N  d N b ) )  amplitude function. 

4. Non-resonant wavelength excitation 
4.1. General analysis 

This case corresponds to the critical regime where R z R, and it turns out, as we 
showed in Riahi (1993), that O ( 2 )  < 6 < O(e). Following Pal & Kelly (1978) and Riahi 
(1993), we consider the following expressions for $, 6' and R in powers of c and 6: 

4 m n  I ; 6' = m=On=O c c E m s n  1 @(: 1 400 = Boo = 0. (4.1) 

Upon inserting (4.1) into (2.3 b, c), (2.5) and (2.6) and disregarding the quadratic terms, 
we find the linear problem whose order-2 60 system is of the form given in Riahi (1993). 
The solution to this system can be written in the form (3.2), provided and 8, are 
replaced, respectively, by and Ole. 

The order e06l system of the linear problem is of the form given in Riahi (1993) 
whose solution can be written as 

where the system and the solution forf, and g ,  are given in Riahi (1993). As was noted 
in Riahi (1993), the double-series expansion procedure of this section breaks down for 
a:) = a, since g ,  and f, become unbounded. Hence, our method of solution here is 
strictly valid for a:) =+= ac. 

Some results presented in Riahi (1993) indicated that 

O(e2) < 6 < O(e), (4.3) 
which holds in the present problem as well. This result implies the need for an 
expression for R,, which is found by applying the solvability condition and averaging 
in x, y and z for the order-€ S system of the nonlinear problem. Using (4.2), this 
condition can be simplified to the following form : 

A,*R, ,  = CL,S,, < w,wlw;) > A ,  ( n  = - N ,  ..., - 1,1, ..., N ) ,  (4.4) 
IP 

where the expression for the coefficient Sip, which is a function of a:) and q5!!, is given 
in Riahi (1993) and 

It can be seen from (4.4) that Ro, can be non-zero if 

$!: = (k ,  * k;))/(na;'). 

k ,+k,+kF) = 0 (4.5) 
for at least some values of 1 and p .  However, for a:) = 2n, R,, is zero even if (4.5) is 
satisfied since S,, vanishes (Riahi 1993). Using (3.6), (3.8) and following the same 
procedure and analysis as discussed in Riahi (1993), we find that non-trivial results due 
to significant boundary modulations exist only if 

a;) < 2n (4.6) 
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for at least some p .  We shall assume that the condition given by (4.6) is valid. Such a 
condition can also be inferred from the order-e S system with resonant terms treated by 
Rees & Riley (1989b). 

4.2. Modal analysis 
Using (3.11) and (3.14) in (4.4), multiply the resulting system (4.4) by v,,, and average 
over the slow variables, we end up with a system for the coefficients an+ This system 
turns out to imply that the expression for the product R,, annr can be non-zero only if 
(4.6) and the condition 

(4.7) 
hold for at least somej and m' and a given n'. The condition (4.7) holds only if the three 
wave vectors yjP, ymf l  and y,., form a triangle so that the component of the flow pattern 
due to amplitude functions can be rectangular cells. 

Let us now consider the following specific examples based on the system for a,,, in 
order to illustrate the non-trivial and often surprising inter-relations between the 
boundary modulation pattern and the subsequent preferred flow pattern. 

Example 1 

for Rolann. can be non-zero only if (4.5) and (4.7) hold and if 

yj; + ym.t + y,., = 0 

M(b) = "0' = 1 , n + a:) < 2n and all the a:) have the same value. The expression 

@) = q5ibi = ag)/(2n:) and < 2h. (4.8) 
This result implies that the preferred flow solution is of a small-scale rectangular type 
where the angle w between two adjacent wave vectors is either 

w = 2cos-'[a(,")/(2x)] or 18Oo-w, (4.9) 
and a large-scale rectangular shaped amplitude. For a;) = 4 2  n, a small-scale square 
solution and a large-scale rectangular-type amplitude is preferred. Since a$') =I= 0, a 
small-scale two-dimensional roll pattern is not possible. The preferred rectangular-type 
amplitude depends on the initial conditions since the angle between two adjacent y lm  
vectors is arbitrary. 

The streamlines in the (x, y)-plane are shown in figure 3 for N(b)  = M(') = 1, N = 
M = 2, n: + a:) < 2n, A(') < h = n, a = n, 6 = 0.1, I,, = Z1,-l = 1-1,-1, with k,  and yi:) 
parallel to the x-axis, k,  and yzz parallel to the y-axis, and k?) and y$) parallel to the 
line y = -x. Also, the sign of l,, is chosen such that 1,,Sl, < 0. The isotherms for this 
case are not presented in the figure since they are simple straight lines parallel to 
y = -x. It is seen from figure 3 that the preferred horizontal flow pattern exhibits a 
double cell structure. There are large square cells, repeated every 10 units in the x- and 
y-directions, and there are also small square cells which are repeated every 2//2 units 
along the boundaries of the large cells (parallel to lines y = kx). 

Example 2 
M @ )  < 2, Nb)  = 2, n =I a:) < 2n: and all the a:) have the same value. We find that 

a small-scale square-type solution with large-scale amplitude in the form of rectangular 
( M ( b )  < 2) or multi-modal ( M  = 4, M @ )  = 2) pattern is preferred for a:) = 4 2  n. For 
other values of a:), a small-scale rectangular ( M @ )  < 2) or multi-modal ( N  = 4, M @ )  
= 2) type solution with large-scale rectangular ( M @ )  < 2) or multi-modal ( M  = 4, 

M @ )  = 2) amplitude with an arbitrary ylm orientation is a possible preferred solution 
leading to the same critical R,,, and thus the solution realized is the one due to the 
initial condition. For h = h@)/42,  these results are valid, provided that the large-scale 
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FIGURE 3 .  Streamlines in the (x,y)-plane for A“*’ = MCb’ = 1, N = M = 2, czg) = ~ ( ~ ) , n :  + dbi < 2n, 
A(@ < A, t = 0.1, h = 7~,a  = n, l,, = I ,  , = 1-,,-,, with k ,  and yI1 parallel to the x-axis, k,  and yz2 
parallel to the y-axis, and kf! and yf; parallel to the line y = -- .x. The sign of I,, is chosen such that 
4 ,  s,, < 0. 
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FIGURE 4. Isotherms at the lower boundary for M(’) = l ,N(*’ = 2,h‘ b ,  - - a:’ = y‘2n,e = O.l,l,, = 
I ,  ~ , ,  with ky) and y\:i parallel to line they = -x, kf) paralle to the x-axis and y r i  parallel to they-axis. 

rectangular amplitude is replaced by a large-scale amplitude in the form of squares. 
The isotherms at z = -f are shown in figure 4 for M @ )  = 1, N @ )  = 2, a:) = A@) = 
~ ’ 2 x ,  e = 0.1, I,, = 11,-1, with ky)  and yg) parallel to the line y = -x, k r )  parallel 
to the x-axis and yl:) parallel to the y-axis. It is seen from this figure that isotherms form 
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a pattern similar to that due to a semi-regular rectangle. The averaged direction of the 
isotherms is close to that of the line y = - x .  The flow streamlines for this case have the 
same form as those shown in figure 3. 

The above examples can be extended to arbitrary N @ )  and M @ ) .  For yg?,.y$L = 0 
and kg).k‘,b) = 0 hold j ’  and j integers numbers of times, respectively, and for 
R,, < 0, large-scale multi-modal ( M  = 2, . . . ,2j’) amplitudes superimposed on small- 
scale multi-modal ( N  = 2, . . . ,2 j )  solutions are all possibly preferred for a;) = 2/2 x. 
For R,, > 0, large- and small-scale forms are replaced by large- and small-scale multi- 
modal ( M  = 2, . . . , 2(Mb - 1’)) and ( N  = 2, . . . , 2 ( N @ )  - J)) forms respectively. For all 
other cases, large- and small-scale forms are replaced by multi-modal (2 < M < 2 M 9  
and (2 < N < 2 N 9  forms, respectively, with arbitrary yln orientations, leading to the 
same critical R,,, and thus the preferred solution is one of these due to the initial 
condition. 

4.3. Non-modal analysis 
We consider the system (4.4) for this analysis. Taking the complex conjugate of (4.4) 
and using it back in (4.4) leads to a linear algebraic system for A,(n = - N ,  . . . , - 1,1, 
. . . , N ) .  The boundary imperfection functions L,(P = - N @ ) ,  . . . , - 1,1, . . . , N @ ) )  are 
assumed to be given. The system for A ,  then has, in general, non-trivial solutions for 
A,, provided the determinant of the coefficients of the unknowns A ,  vanishes. This 
leads to an equation for Lf Lp,(p,p, = -Wb), . . . , - 1,1, . . . , N @ ) )  which must be 
satisfied by the functions L,. The amplitude functions A ,  can then be determined from 
the system for A,, which are all but one affected by L,. Only one of the functions A ,  
can be chosen arbitrarily owing to the linearity of the amplitude system with respect 
to A,. Therefore, in general, the large-scale amplitude of the resulting flow solution(s) 
should depend on the boundary imperfections. 

Since L, are, in general, functions of the slow variables, the above-stated determinant 
equation can be satisfied when L, is given by 

L, = g,(tanh x, + i(P/lPl) sech x,), (4.10) 

where the g ,  are some real constants. Such a form for the boundary imperfection 
functions L, is suggested by the system for A ,  and the above analysis and can lead to 
the unusual non-modal solutions for a ‘kink’ that were predicated in $3.3. 

Let us now consider the following specific examples based on the system for A ,  in 
order to illustrate the inter-relations between the boundary imperfections and the 
resulting flow solution. 

Example 1 

non-zero only if (4.5) holds and if 
N @ )  = 1 and x =t= < 2 x .  The expression for Rolannl in the system for A ,  can be 

(4.11) 

for at least some values of the subscripts. This result implies that only N = 2 is possible. 
Using the system for A ,  and (4.10) and (4.1 l), we obtain 

R,, = flglS,,I, A ,  R,, = g,Sll(tanhx,-isechx,)A*. (4.12) 

It is seen from (4.12) that both supercritical (Rol > 0) and subcritical (R,, < 0) 
solutions are possible, but the preferred solution corresponds to R,, < 0. The results 
discussed above imply that the preferred flow solution is made up of a small-scale 
modal rectangular-type solution, where the angle w between two adjacent wave vectors 
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FIGURE 5.  (a) Streamlines in the (x,y)-plane and (b) isotherms at the lower boundary, for 
N =  2,"b' = 1,Cx. = n: , 
and kf" parallel to line the y = --x. 

= 2/271,e = 0.1, and for k ,  parallel to the x-axis, k,  parallel to the y-axis, 

satisfies (4.9), and a large-scale non-modal rectangular-type amplitude with a 'kink'. 
The resulting streamlines in the (x, y)-plane and the isotherms at z = -f are shown, 
respectively, in figures 5 (a)  and 5 (b) for N = 2, N @ )  = 1, a = n, a:) = 2/2x, c = 0.1, 
and for k ,  parallel to the x-axis, k ,  parallel to the y-axis and kib) parallel to the line 
y = -x. The coefficient g, is chosen such that arbitrarily A ,  takes the value - 1. The 
results shown in these figures indicate that the flow streamlines represent a pattern close 
to that of irregular rectangles. The isotherms indicate a pattern close to that of 
somewhat irregular rolls inclined primarily in the direction of y = - x. The horizontal 
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flow structure and the imperfection isotherms are periodic in y but non-periodic in x, 
unless 1x1 + co . 

Example 2 
N t b )  = 2, n =!= a$) < 2n and all the a:) have the same magnitude. We also assume 

that the distribution of k:) vectors is regular. We find that the small-scale modal square 
solution with a large-scale non-modal rectangular amplitude with a ‘kink ’ is preferred 
for a:) = d 2 n .  For other values of aQ), either a small-scale modal rectangular solution 
with a large-scale non-modal rectangular amplitude with a ‘kink’ or a small-scale 
multi-modal ( N  = 4) solution with a large- scale multi-non-modal ( N  = 4) amplitude 
with a ‘kink’ is a possible preferred flow solution. The resulting streamlines in the 
(x, y)-plane and the isotherms at z = -f are determined for N = N @ )  = 2, a = n, 
ag) = .\/2n, E = 0.1, g,  = g,, and for k,  parallel to the x-axis, k ,  and kib) parallel to the 
y-axis and kib) parallel to the line y = -x. The coefficient g,  is chosen such that R,, = 
g,S& < 0. The arbitrary amplitude A ,  is chosen to be the inverse of cos(7cy). The 
results indicate that the flow streamlines represent a pattern close to that for an 
irregular rectangle. The isotherms indicate a pattern close to that for a different 
irregular rectangle. The horizontal flow structure and the isotherms are periodic in y 
but are non-periodic in x, unless 1x1 is sufficiently large. 

The above examples can be extended to arbitrary N @ )  and for a regular distribution 
of kg) .  For the case where k:). k:) = 0 holdsj integer number of times and for R,, < 0, 
the large-scale multi-non-modal ( N  = N J  amplitude superimposed on the small-scale 
multi-modal ( N  = N,)  solution is preferred for each N,(N, = 2, . . . ,2j) for a:) = 4 2 n .  
For R,, > 0, large- and small-scale solutions are replaced by a large-scale multi- 
non-modal ( N  = N,) and small-scale multi-modal ( N  = N,) solution for each N,(N, = 
2, . . . , 2(Nb -j)). For other cases, large- and small-scale solutions are replaced by a 
multi-non-modal ( N  = N3) and a multi-modal ( N  = N,) solution, respectively, for 
each N3(N3 = 2, . . . , 2 N @ ) ) .  

5.  Discussion 
As was shown in Riahi (1993) and also turns out to be true in the present case, the 

present problem does not lead to qualitatively different results from those for the 
problem where the lower boundary’s location is at z = - f + 6h(x, y) ,  and the boundary 
corrugated problem can incorporate the effects of roughness elements of arbitrary 
shape h, provided that Ntb)  can tend to infinity and that ag) do not all have the same 
value. The discussion presented in Riahi (1993) can be extended to the present 
problem which indicates that the results presented in 93 are valid for terms in (3.8) for 
h with a‘,) = n, the results presented in 94 are valid for terms in (3.8) with 2n > a$) + 
n, and the terms in (3.8) with 27c < a$) make zero contribution to various flow features 
and are irrelevant for the present problem. 

Rees & Riley (1986) considered thermal convection rolls in a porous medium 
between two one-dimensional undulating boundaries. They found that boundary 
modulation effects can be stabilizing. Later the same authors (Rees & Riley 1989a, b) 
investigated the effects of a simple sinusoidal boundary imperfection on weakly 
nonlinear convection. They determined the equation for the flow amplitude and 
investigated two-dimensional rolls solutions. Then, the stability of one or two sets of 
rolls solutions with respect to different roll disturbances were studied. They found, in 
particular, that the region of linear stability of the rolls is enlarged by the presence of 
the modulations. For a wide range of modulation wavenumber a three-dimensional 
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motion with a rectangular panform results from a resonant interaction between a pair 
of oblique rolls and the boundary forcing. Their results generally agree with the modal 
case of the present results for W b )  = 1 and with (3.27). 

The problem studied in the present paper deals with convection in a horizontal 
layer bounded by plates whose mean temperatures are maintained at constant values. 
This problem, as Newell & Whitehead (1969) demonstrated, has the property that it 
admits slow horizontal variables . Y , ~  and ys  of orders 6 and el’’, respectively, and x, 
dependence is more important than yS dependence. This property is due to the fact that 
for R just beyond R,, in the absence of boundary imperfections, two-dimensional rolls 
are preferred (Newel1 & Whitehead 1969; Riahi 1983), where it is assumed that the x -  
axis is along these rolls. The resulting amplitude system (A) is then a system of partial 
differential equations where each equation is second order in derivatives with respect 
to -Y, and fourth order in derivatives with respect to j v S .  Another equally important 
problem. with possible geothermal applications, is convection in a horizontal layer 
bounded by two poorly conducting plates. It can then be shown easily that such a 
problem admits the slow variables s , ~  and y, which are now both of order 6 ,  and .x, 
dependence and y y  dependence are equally important. This property is due to the fact 
that for R just beyond R,, in the absence of boundary imperfections. three-dimensional 
solutions in the form of squares are preferred (Riahi 1983). The resulting amplitude 
system will then be a system of partial differential equations where each equation is 
second order in derivatives with respect to both s, and .I,,-. Although the results for such 
system will be reported elsewhere, it is of interest to note here that such a system can 
admit non-modal solutions with kinks, different from those discussed in the present 
paper, and the resulting preferred patterns will be affected accordingly. 

Another interesting extension of the present study, to be considered in a future 
contribution, is to investigate temporal imperfection effects in order to explore the 
possibilities for the preference of new patterns with temporal kinks. However, such an 
extension should be carried out for convection systems where time-dependent solutions 
can be preferred since it has been shown recently (Riahi 1995), for simple temporal or 
one-dimensional spatial sinusoidal boundary modulation effects on convection in a 
rotating system, that the spatial or temporal type of modulation mode is effective only 
if it  is acceptable to the linear system. For example, the oscillatory mode of modulation 
is found to be ineffective for the case where the linear theory predicts that the steady 
solutions are preferred. 

Although there have been very few studies so far on the problems of modal package 
convection or problems of convection influenced by boundary imperfections, the 
importance of such problems cannot be underestimated. Modal package convection 
provides a larger manifold of realizable patterns due to solutions as the result of 
external forcing or from general initial and boundary conditions. Closely compatible 
with such systems are convection systems of the type considered in the present paper 
which provide. in addition to a larger manifold of realizable patterns, a way to control 
instabilities and flow structures. 

6. Conclusions 
The results of the present study lead to the following conclusions. 
(i) Depending on the values of the wavenumbers involved, the flow structure may 

or may not be repeatable in the horizontal direction. 
(ii) The preferred flow pattern resembles quite closely the isothermal pattern due to 

boundary imperfections for near-resonant wavelength excitation. For non-resonant 
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wavelength excitation, the preferred flow pattern is, generally, quite different from the 
isothermal pattern due to the boundary imperfections. 

(iii) The wavenumbers of the modal components of the preferred flow solution are, 
generally, different from the classical ones. 

(iv) The preferred flow pattern is, generally, more regular for the case of the modal 
form of boundary imperfections, while it is, generally, more non-regular and three- 
dimensional for the non-modal form of the boundary imperfections. 

(v) The preferred flow solution is, generally, non-periodic with respect to x for the 
non-modal form of boundary imperfections. 

(vi) The preferred flow pattern is, mostly, a multiple of rectangular patterns. 
(vii) The boundary imperfections can have profound non-trivial effects on the flow 

patterns realized, leading to the preference for a certain continuous finite bandwidth of 
modes which may not be realized by other means. 

(viii) The preference for solutions with either a modal or non-modal form of the 
amplitude functions representing a continuous finite bandwidth of convection modes 
was demonstrated and a wider class of solutions which can be both realizable and 
stable only in the presence of boundary imperfections was obtained. 

The author would like to thank the referees for useful and constructive suggestions 
which led to the improvement of the paper. 
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